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Abstract. The magnetization,M, of a two-dimensional layer of the Heisenberg ferromagnet
Pd(1.2 at% Fe) is examined. It is found thatM increases as ln(H) over a wide range of magnetic
field, H , and temperature. The temperature dependence of each parameter derived from such
ln(H) fits to the data is compared with calculations concerning the two-dimensional classical
Heisenberg model. The data do not follow all the predictions of the classical model.

1. Introduction

The uniform susceptibility of a two-dimensional Heisenberg (2DH) ferromagnet is predicted
[1, 2] to vary with temperature(T ) asχ(T ) = f (T ) exp(B/T ) for T � B (for a square
lattice with nearest neighbour interactions,B = 4πJS2 whereJ is the exchange energy
andS is the spin.) That is, there is no long-range order [3] and no phase transition [4] for
T > 0. For a system with classical (vector) spinsf (T ) is expected [1] to be independent of
T whereas for the system with quantum spins calculations suggest [2] thatf (T ) ∝ T 2. We
have investigated [5] thin films of the Heisenberg [6] ferromagnetic alloy Pd(1.2 at% Fe)
and found that they are excellent examples of the 2DH model. For a film which is 2 nm
thick, measurements ofχ(T ) can be used to distinguish three regions ofT . (1) There
is a high-temperature region (but forT still well below the Curie temperature of bulk
Pd(1.2 at% Fe)) in whichχ(T ) behaves as predicted for a 2DH ferromagnet. In this
2DH regime the dominant temperature dependence is exponential in 1/T . Since it is quite
difficult for an experiment to distinguish between possible forms for the prefactor of such
an exponential, we have not attempted to distinguish between the different possibilities
mentioned. However, we note that the value ofB one derives by fittingχ(T ) is 53 K for
classical spins and 70 K for quantum spins. (2) Below a rather well defined temperature,
T ∗ = 6.3 K, χ(T ) begins to increase even more rapidly probably indicating a crossover
to x–y behaviour as the dipole–dipole interactions force the spins to lie in the plane of
the film. (3) Below a roughly defined temperature,T ′ = 5 K, we find magnetic field
hysteresis effects and time relaxation phenomena. BelowT ′ there is probably a zero-field
magnetization either due to a phase transition or due to finite size effects in the plane of the
film cutting off the growth of 2d ferromagnetic spin correlations.

We have also shown [5] that the magnetic field(H) dependence of the magnetization
(M) at moderately strong fields, where there is curvature inM(H) but no saturation, is
consistent with theoretical predictions [7, 8] regarding the 2DH model with classical spins.
As far as we know there are no finite-field predictions for the quantum spin model. The
theoretical prediction for classical spins is thatM = A(T ) ln(H/H ∗) whereA ∝ T and
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H ∗ ∝ exp(−B/T ). In this note we present and discuss measurements ofM(H, T ) taken
over a much wider range ofH andT than in [5]. We will see thatM can always be fit
to a ln(H) form at intermediate fields and that, in contrast to the case ofχ(T ), we can
draw clear conclusions about the temperature dependences of the derived parameters. We
find thatH ∗ is proportional to 1/χ as predicted but it turns out that the prefactorA is not
proportional toT .

2. Experiment

The films to be discussed are the same as those in [5]. Briefly, the Pd(1.2 at% Fe) layer
was grown by sputter deposition onto ambient temperature substrates from an alloy target
of the same composition. The magnetic layer was grown on top of a seed layer of 300Å
of 99.99% pure Pd which was deposited at room temperature on Si (100) substrates. The
magnetic layer was then covered with a 300Å thick cap of pure Pd. X-ray diffraction
and transmission electron microscopy (TEM) showed that the resulting film was completely
crystalline and single phase with grain sizes of the order of 150–300Å.

The magnetization was measured using a quantum design SQUID magnetometer with
a superconducting magnet. In order to maximize the signal and minimize the background,
four films were inserted into a long drinking straw which was then suspended from the rod
supplied by the manufacturer. Measurements were made over the range 3 K< T < 18 K.
The signal from the Si substrates is dominated by a diamagnetic background but also
has a smallT -dependent paramagnetic component. A background run was made at
18 K where the signal from the films is negligible. A straight line was fit to the
background data and this line (corrected for the knownT -dependent paramagnetic part)
was subtracted from all the data at lowerT . The background subtraction was necessary for
interpretation of data taken above 9 K but had essentially no effect on data taken below
7.5 K.

3. Results

Figure 1 showsM(H) for these films over a wide range ofT . It must be pointed out
that the ranges ofT andH in which we can make measurements are restricted on the
high-H , high-T side because the sample magnetization becomes equal to or smaller than
the background substrate magnetization and they are restricted on the low-H side because
we are using a superconducting magnet to supply the field and we do not shield out the
earth’s field so any fields of the order of the earth’s field (about 20 A m−1) are not well
defined. The lines through the data in figure 1 represent fits ofM to a ln(H) form over
the region for which that form is followed. Although the ln(H) form fits reasonably well
over a wide range ofT , we cannot make measurements over a wide enough range ofH to
verify that the ln(H) form is best. However, in addition to predicting the ln(H) form, the
theory also predicts the dependence upon temperature of each parameter in the fit. We find
that we can draw rather strong conclusions regarding the behaviour of these parameters as
T is changed and we can easily determine if they follow the theory.

For instance, figure 2 shows the values ofH ∗ (derived from figure 1) on a logarithmic
scale as a function ofT −1. H ∗ represents the field below whichM/H is independent of
H and so must vary, roughly, as the inverse ofχ(T ). Clearly, the same crossover at 6.3 K
which we saw in the examination ofχ is evident also inH ∗ as well as the other change in
behaviour at 5 K. In the inset to figure 2 we showχH ∗ as a function ofT in the temperature
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Figure 1. Magnetization as a function ofH for a 2 nm thick Pd(1.2 at% Fe) film showing
that M varies as ln(H) at intermediate magnetic fields for this two-dimensional Heisenberg
ferromagnet.

Figure 2. Temperature dependence of the magnetic field scale,H ∗, derived from the ln(H)
fits seen in figure 1. The crossover at about 6.3 K is clearly seen. Below about 5 K one finds
magnetic field history and time dependences at low fields. The inset shows thatH ∗ is inversely
proportional toχ over the range ofT for which both can be estimated.
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Figure 3. Temperature dependence of the prefactorA derived from figure 1. TheT -dependence
of A changes at the crossover temperature but never follows the predictions of [7].

range in which we can measure both quantities. One can see thatχH ∗ is independent ofT ,
as expected. It appears that the only new information we gain from an analysis ofH ∗ is an
estimate ofχ(T ) in the region ofT (T < 5.7 K) in which we cannot measure it directly.

In figure 3 we show theT dependence ofA, the prefactor to the ln(H) term determined
from the fits in figure 1. Again we can distinguish the three regimes ofT . The prediction
of the classical 2DH model is thatA(T ) is proportional toT . In contrast, our experiments
show that: (1) in the high-temperature region(T > 6.3 K) where the 2DH prediction
should hold,A(T ) is nearly independent ofT ; (2) for 5 K > T > 6.3 K A decreases as
T decreases. The decrease below the crossover may be approximately linear inT but it is
clearly not directly proportional toT ; and (3) below 5 K the parameter again changes its
temperature dependence but it is unlikely to have any simple significance in this regime.

4. Discussion

One expects a thin film of a Heisenberg magnet to behave two-dimensionally when it is
cooled below the Curie temperature of the 3D bulk magnet. AsT is decreased further
[1] the two-dimensional spin–spin correlation length,ξ , and χ grow exponentially until
(a) the demagnetizing effects of the dipole–dipole coupling come into play and decrease the
number of spin components to two (x–y model) or (b) the crystalline anisotropy comes into
play and decreases the effective number of spin components to less than three. The system
should then have a phase transition [1, 9] of either the Kosterlitz–Thouless type or to a
state with long-range magnetic order. We estimate [5] the dipole–dipole coupling constant
at δ ≈ 0.1 K and use measurements on bulk Pd(Fe) samples by various groups [10, 11]
to estimate that the anisotropy energy per Fe is 0.01 K < D < 0.08 K. Since the dipole
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energy is probably somewhat larger than the anisotropy energy we will assumeδ > D in the
following discussion. However, the discussion would not be changed much by the reverse
assumption.

Following an argument of Friedmanet al [12] the dipolar coupling is expected to become
important when the dipolar energy,δξ2, of a cluster of aligned spins of sizeξ2, is of order
kBT . From the quantum spin calculations of [2] there is an explicit form found forξ so we
can estimate this crossover temperature. One finds thatTcrossover = 4πJS2/ln(JS2/δSC2

ξ )

whereCξ was found [2] to be 0.07 andS is of order one [11]. We get 4πJS2 = 70 K from
fitting χ(T ) to the appropriate equation from [2] so that we expect to see the effects of
dipole interactions below about 7.5 K. The main effect of the dipole term is a ‘shape effect’
tending to hold spins in the plane of the sample so that they are effectivelyx–y spins. In
the same manner one can estimate that the temperature where the effects of the anisotropy
become apparent is about 6 K. We think that it is most likely that the crossover at 6.3 K
is due to dipole coupling and that the change at 5 K is thedevelopment of magnetic order
due to the combined effects of dipole–dipole coupling and anisotropy.

We therefore suggest that the film is a 2D Heisenberg magnet below the bulk Curie
temperature and above 6.3 K. In this temperature range we find thatA(T ) is roughly
independent ofT . The disagreement between this result and the theory of Khokhlachev [7]
may be due to the fact that we are dealing with a quantum system rather than a classical one.
As the temperature is decreased belowTcrossover , the spin system should be better described
asXY spins and one finds thatχ increases much faster, than in the 2DH regime, as the film
approaches a ferromagnetic phase transition. In this crossover region there are no theoretical
predictions forM(H) so there is no reason to expect a simpleT dependence ofA(T ). For
T < 5 K the appearance of magnetic hysteresis suggests that there is magnetic order.
However, as noted in [5], the remanent magnetization,Mrem, decays logarithmically with
time so we cannot easily examineMrem(T ) as in [13]. In fact, the simplest conclusion is that
there is no true long-range magnetic order even forT < 5 K. For instance, the correlation
length may be limited by the microstructure of the film. In this case the magnetic hysteresis
would be explained by blocking of what are basically superparamagnet regions. Finally, in
trying to decide whether there is a true phase transition at 5 K we have examinedχ(T )
(actually we useH ∗ to estimateχ ) for divergence near 5 K andM(H) for power-law
behaviour near 5 K. The uniform susceptibility (when determined in this fashion) certainly
does not diverge but we do find that for allT 6 5 K, M ∼ H 0.1 and that forT > 5 K a
power-law form clearly does not work. The problem we have with this fit is the same as
for ln(H), M changes only slightly for the range of fields available to us so many functions
might fit.

To summarize, we have seen that very thin films of the alloy Pd(1.2 at% Fe) behave as
2D Heisenberg magnets over a significant range of temperatures. At low-T the effects of the
dipole and anisotropy energies come into play and the system crosses over to a different type
of behaviour. In the 2DH regimeM varies as ln(H) as predicted by theories of classical
spins but the prefactor of the ln(H) form is independent ofT rather than linear inT . The
discrepancy may result from using a theory with classical spins rather than quantum spins.
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